trigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems

نویسندگان

a. shokri

a. a. shokri

sh. mostafavi

h. saadat

چکیده

in this paper, we present a new two-step trigonometrically fitted symmetric obrechkoff method. the method is based on the symmetric two-step obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve ivps with periodic solutions such as orbital problems. we compare the new method to some recently constructed optimized methods from the literature. the numerical results obtained by the new method for some problems show its superiority in efficiency, accuracy and stability.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems

In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...

متن کامل

The symmetric two-step P-stable nonlinear predictor-corrector‎ ‎methods for the numerical solution of second order‎ ‎initial value problems

In this paper‎, ‎we propose a modification of the second order method‎ ‎introduced in [‎‎Q. Li and ‎X‎. ‎Y. ‎Wu‎, A two-step explicit $P$-stable method for solving second order initial value problems‎, ‎textit{‎Appl‎. ‎Math‎. ‎Comput‎.}‎ {‎138}‎ (2003)‎, no. 2-3, ‎435--442‎] for the numerical solution of‎ ‎IVPs for second order ODEs‎. ‎The numerical results obtained by the‎ ‎new method for some...

متن کامل

Implicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems

In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the n...

متن کامل

the symmetric two-step p-stable nonlinear predictor-corrector‎ ‎methods for the numerical solution of second order‎ ‎initial value problems

in this paper‎, ‎we propose a modification of the second order method‎ ‎introduced in [‎‎q. li and ‎x‎. ‎y. ‎wu‎, a two-step explicit $p$-stable method for solving second order initial value problems‎, ‎textit{‎appl‎. ‎math‎. ‎comput‎.}‎ {‎138}‎ (2003)‎, no. 2-3, ‎435--442‎] for the numerical solution of‎ ‎ivps for second order odes‎. ‎the numerical results obtained by the‎ ‎new method for some...

متن کامل

A Family of Trigonometrically Fitted Enright Second Derivative Methods for Stiff and Oscillatory Initial Value Problems

A family of Enright’s second derivative formulas with trigonometric basis functions is derived using multistep collocation method. The continuous schemes obtained are used to generate complementary methods. The stability properties of the methods are discussed.Themethodswhich can be applied in predictor-corrector formare implemented in block formas simultaneous numerical integrators over nonove...

متن کامل

P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems

This paper discusses the numerical solution of periodic initial value problems. Two classes of methods are discussed, superimplicit and Obrechkoff. The advantage of Obrechkoff methods is that they are high-order one-step methods and thus will not require additional starting values. On the other hand they will require higher derivatives of the right-hand side. In cases when the right-hand side i...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of mathematical chemistry

ناشر: university of kashan

ISSN 2228-6489

دوره 6

شماره 2 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023